History of science in Europe 1970 – 2010

a.k.a. Does urban scaling law apply to university publications?

Štefan¹ & Balazs² & Miroslav¹

¹ University of Economics in Bratislava

² Centre for Economic and Regional Studies in Budapest, Corvinus University of Budapest

Intro

- Scientific production and innovation are mostly urban phenomenom (Audretsch and Feldman, 1996, Glaeser et al. 1992)
- Complex system research suggests that the magnitude of urban innovative output is the function of population size characterized by the "urban scaling law" (Bettencourt, Lobo, Helbing et al. 2007, Bettencourt, 2013)
 - Most of the research is using patents as output indicator (Fritsch, Wyrwich 2020; Bettencourt, Lobo 2016)
- Scientific performance of universities is influenced by research funding (Auranen and Nieminen, 2010), by the **history** and size of the university (Frenken et al. 2017) that do not necessarily follow the urban scaling mechanisms.
 - Other universities have been established more recently in small cities for regional development purposes (Barbera and Fassero, 2013).

Urban scaling law

$$Y(N,t) = Y_0(t)N(t)^{\beta}e^{\xi(t)}$$

Y(N, t) – city property/output (urbanised area, GDP, patents...)

N(t) – population at time t

 $Y_0(t)$ – baseline constatt, function of time capturing contry wide development/decline

 β - scaling exponent (elasticity), constant, time independent

 $\beta > 1$ superlinear scaling, $\beta < 1$ sublinear scaling

 $\xi(t)$ – statistical fluctuation

 $\beta_{socio-economic} \cong 1,17$

Data

- List of European universities European Tertiary Education Register (ETER, 2021).
- Matching with **Scopus Elsevier Database**:
 - 1488 European universities (ongoing data cleaning progess), time coverage 1788 and 2020
 - journal articles only and exclude books, conference papers, reviews, or editorials
- Cities **functional urban areas** (FUA) densely inhabited cities and their surrounding areas (commuting zones) such that they constitute an integrated labor market (OECD 2019).
- Population population density grids of the Center for International Earth Science Information Network (CIESIN, 2021) we estimate the number of inhabitants of FUAs in 1970, 1980, 1990, 2000 and 2010.
- The final dataset consists of population and university publications of 451 cities from 31
 European countries covering 5 time periods. The first period (1970) uses population data from
 1970 and publication data in a 10 year window (1966 1975). Other four time periods (1980,
 1990, 2000, and 2010) follow the same rule.
- We also use **four size categories of cities**: small (up to 200 thousand inhabitants), smaller medium (up to 500 thousand), larger medium (up to 1.5 million) and large (more than 1.5 million)
- Cities are part of **different urban systems centered data** for each country

Methodology

- RQ1: What is the evolution of urban scientific production in European cities?
 - EDA Exploratory data analysis
- RQ 2: How does the urban scaling law characterize the scientific production across European cities?
 - Linear OLS $logY_i = logY_0 + \beta logN_i + \xi_i$
 - Comparison with theoretical value of β
 - Nonlinear OLS $logY_i = logY_0 + \beta logN_i + \beta logN_i^2 + \xi_i$

Overview 1 – growth of sum of papers and population

Overview 1 – growth of scientific productivity across city size categories

Overview 3 – variation of productivity of cities across size categories

Overview 3 - Most productive cities (2010)

150000

Cambridge	UK	65 490	359 659	medium_small	182 089
Grenoble	FR 2	115 521	650 689	medium_large	177 536
Uppsala	SE	42 907	271 784	medium_small	157 872
Ede	NL	22 933	145 808	small	157 282
Pisa	IT	28 299	189 470	small	149 359
Oxford	UK	73 404	512 675	medium_large	143 178
Caserta	IT	17 258	121 563	small	141 968
Maastricht	NL	21 954	179 103	small	122 578
Tübingen	DE	25 517	212 268	medium_small	120 211
Lausanne	СН	42 408	380 551	medium_small	111 438

	Dependent variable:							
	y70pap (1)	y80pap (2)	у90рар (3)	y00pap (4)	y10pap (5)			
у70рор	1.675*** (0.127)							
у80рор		1.841*** (0.119)						
у90рор			1.793*** (0.104)					
у00рор				1.575*** (0.093)				
у10рор					1.391*** (0.080)			
Constant	-0.000 (0.046)	-0.000 (0.044)	0.000 (0.039)	-0.000 (0.035)	0.000 (0.030)			
Observations R2 Adjusted R2 Residual Std. Erro F Statistic	307 0.364 0.362 r 0.810 (df = 305) 174.398*** (df = 1; 305)	359 0.402 0.400 0.841 (df = 357) 239.587*** (df = 1; 357)	414 0.417 0.416 0.794 (df = 412) 295.093*** (df = 1; 412)	443 0.394 0.393 0.729 (df = 441) 287.215*** (df = 1; 441)	448 0.406 0.405 0.626 (df = 446) 305.404*** (df = 1; 446)			
Note:				*p<	0.1; **p<0.05; ***p<0.01			

Title: Regression results 1070 - 2010

Title: Regression results 1970 - 2010

		Dependent variable:					
	y70pap (1)	y80pap (2)	у90рар (3)	y00pap (4)	y10pap (5)		
у70рор	1.841*** (0.151)						
y70pop_sqr	-0.483** (0.243)						
у80рор		2.028*** (0.136)					
y80pop_sqr		-0.564*** (0.204)					
у90рор			2.001*** (0.125)				
y90pop_sqr			-0.541*** (0.184)				
у00рор				1.755*** (0.112)			
y00pop_sqr				-0.463*** (0.164)			
у10рор					1.537*** (0.099)		
y10pop_sqr					-0.358** (0.146)		
Constant	0.064 (0.056)	0.079 (0.052)	0.076 (0.046)	0.064 (0.041)	0.049 (0.036)		
Observations R2 Adjusted R2 Residual Std. Er F Statistic	307 0.372 0.368 ror 0.806 (df = 304) 90.029*** (df = 2; 304)	359 0.414 0.411 0.833 (df = 356) 125.856*** (df = 2; 356)	414 0.429 0.427 0.787 (df = 411) 154.634*** (df = 2; 411)	443 0.405 0.402 0.723 (df = 440) 149.817*** (df = 2; 440)	448 0.414 0.412 0.623 (df = 445) 157.457*** (df = 2; 445)		
Note:				*p<	0.1; **p<0.05; ***p<0.01		

Conclusions

- Substantial increase of university publication activity in cities during last 50 years
- Partly confirmed urban scaling law for scientific production measured by publications
 - Suggested non linear relation
- History matters in scientific production established university cities
 - Large cities are uderperforming, medium sized cities perform better than expected by the urban scaling law
 - Small cities are catching up in recent periods

Annex 1

$$\begin{aligned} \beta_{socio-economic} &= 1 + \delta \\ \beta_{employment} &= 1 \\ \beta_{build-infrastucture} &= 1 - \delta \end{aligned}$$

$$\delta = \frac{H}{2(H+2)}$$

H – fractal dimension of movement

 $2 \ge H \ge 0$ $H \rightarrow 0$ only local movement, interactions $H \rightarrow 2$ city widy movement, interactions $H \ge 1$ mixing H = 1 minimal movement costs

$$\beta_{socio-economic} = \frac{7}{6} = 1,17$$

$$\beta_{employment} = 1$$
$$\beta_{build-infrastucture} = \frac{5}{6} = 0,83$$

 $\delta = 1/6 = 0,17$

Annex 2 Data problems

- Data problems
 - Clearing problems (matching)
 - Double counting of publications
- Definition of a city
 - Zero values problem (Finance, Cottineau 2018)
- Measure of scientific output
 - quality of papers is assumed to be same

250+

500+

