Measuring structural resilience of economies Globalization or deglobalization?

Tibor Kiss ^{1,2} Tamás Sebestyén ^{1,2,3} Erik Braun ^{1,2,3}

¹University of Pécs, Faculty of Business and Economics

²Universtiy of Pécs, Faculty of Business and Economics, EconNet Research Group

³MTA-PTE Innovation and Economic Growth Research Group

Hungarian Regional Science Association 19th Annual Meeting Budapest, November 5, 2021

UNIVERSITY OF PÉCS

Faculty of Business and Economics

Agenda

Introduction Motivation

Methods

The IO network Measuring structural resilience Measuring self-organization

Data

Results

The structural resilience of the IO economies The dynamic of resilience indicators Globalization and deglobalization Resilience and self-organization

Discussion

Motivation

Highly globalized international trade vs self-sufficiency

- To make production processes more efficient: specialization, division of labor
- The role of intermediate goods in trade (Johnson and Noguera, 2012; Baldwin and Lopez Gonzales, 2015) and the length of GVC's has increased (Wang et al., 2017)
- The high level of interconnectedness between countries goes hand in hand with the rapid spread of shocks (Fang et al., 2020; Iloskics et al., 2021) in which the structural properties of international linkages have a huge impact (Barrot et al., 2020; Guan et al., 2020)
- The exposure to foreign trade relations carries a high risk (Barrot et al., 2020; Bonadio et al., 2021; Fang et al., 2020; Guan et al., 2020) and the need for self-sufficiency increases (Braun et al., 2021)
- However, backshoring, nearshoring (Piatanesi and Arauzo-Carod, 2019) and for example, in the case of COVID, "renationalizing" (Barrot et al., 2020) do not necessarily make economies less vulnerable

Trade-off

There is an obvious trade-off between efficiency gains from openness (highly globalzed international trade) and high risks from dependence on global value chains (self-sufficiency).

Resilience

The responsiveness of countries to shocks might depend on the resilience of the countries

- Resilience could mean the ability to react to shocks (Reggiani et al., 2002; Annarelli and Nonino, 2016)
- Ecological Network Analysis (ENA) contributo to resilience research (Ulanowicz, 2009) - can also be applied to economic IO data (Kharrazi et al., 2013; Fath, 2015; Chatterjee and Layton, 2020)
- A system's (economy's) resilience level derives from the two structural properties: efficiency and redundancy
 - None of the full efficiency and full redundancy is a good solution
 - An efficient system has only a few mutual relationships, which indicates strong specialized trade flows and corresponds to highly globalized production processes
 - A redundant system has many more similarly weak connections signaling a less specialized and embedded position of elements within the system, corresponding to a lower level of involvement within the international division of labor

The IO network

The IO system

	<i>W</i> ₁	W 2	 Wi	Ei	O_i
W ₁	W 1,1	W 2,2	 W _{i,1}	<i>e</i> 1	<i>O</i> 1
W 2	<i>W</i> _{1,2}	<i>W</i> _{2,2}	 W _{i,2}	e 2	<i>0</i> 2
Wj	W 1,j	W 2,j	 W i,j	e_j	o_j
Mi	<i>m</i> 1	m_2	 mi	0	0
lj [°]	I_1	I_2	 ĺ	0	0

- The rows and columns are the economic sectors
- *w_{i,j}* shows the trade flow from sector *i* to sector *j*
- E_i is the export of sector i
- O_i is the out of sector i
- *M_j* is the import of sector

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- *I_j* is the other input of sector *j*
- ▶ i, j = 1, 2, ...n

Measuring structural resilience

Based on Ulanowicz (2009) & Chatterjee and Layton (2020)

Total System Throughput (TST)

$$TST = \sum_{i=0}^{n+2} \sum_{j=0}^{n+2} T_{i,j}$$
(1)

Average Mutual Information (AMI)

$$AMI = \sum_{i=0}^{n+2} \sum_{j=0}^{n+2} \frac{T_{i,j}}{TST} \log_2\left(\frac{T_{i,j} * TST}{T_{i.} * T_{.j}}\right)$$
(2)

where

$$T_{i.} = \sum_{j=0}^{n+2} T_{i,j}$$
 and $T_{.j} = \sum_{i=0}^{n+2} T_{i,j}$

Shannon Index (H)

$$H = -\sum_{i=0}^{n+2} \sum_{j=0}^{n+2} \frac{T_{i,j}}{TST} \log_2\left(\frac{T_{i,j}}{TST}\right)$$
(3)

Measuring structural resilience (2)

Degree of System Order, i.e. structural resilience indicator (α)

$$\alpha = \frac{AMI}{H} \tag{4}$$

Ecological Fitness Function (Reco)

$$R_{eco} = -\left(\frac{AMI}{H}\right) \ln\left(\frac{AMI}{H}\right) \tag{5}$$

and the maximum of $R_{eco} = 1/e = 0.368$ (e = 2.7183, Euler's Number)

Fitness for Evolution (*F_s*)

$$F_{s} = -e\alpha^{\beta}\log\left(\alpha^{\beta}\right) \tag{6}$$

where β is a coefficient, which serves to adjust the optimal α value

Ecological optimum for resilience on redundany-efficiency scale

Figure 1: Resilience and redundancy-efficiency structure

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

An example

Figure 2: Network illustration for resilience

	Network a)	Network b)	Network c)
α	0.0722	0.3147	0.5183
Fitness	0.1899	0.3638	0.3406

・ロト・(四ト・(川下・(日下)))

Self-organization

Based on Finn (1976)

Construct Leontief-inverse matrix (L), where I is the identity matrix

$$\mathbf{L} = (\mathbf{I} - \mathbf{W})^{-1} \tag{7}$$

The sectoral-level cycling index (FCI_i)

$$\hat{l}_i = \frac{l_{ii} - 1}{l_{ii}} \tag{8}$$

$$FCI_{i} = \hat{I}_{i} \frac{T_{.i}}{\sum_{i} T_{.i}}$$
(9)

The country-level cycling index (FCI)

$$FCI = \sum_{i=0}^{n} FCI_i$$
(10)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Data

Trade flows and IO data: WIOD (Release 2016)

- 43 countries, 56 sectors per country
- Years: 2000-2014
- We create domestic IO tables and sum imports, exports, other inputs and outptus into one-one column
- Openness: the imported inputs divided by the total input, weighted by the size (total output) of the sectors
- Macroeconomic data: Penn World Tables (9.1 version)
 - GDPPC: real GDP at chained PPPs (in thousands bil. 2011 US dollar, per capita)
 - EMP: employment (in millions)
 - CAPITAL: capital stock at current PPPs (in thousands bil. 2011 US dollar)

(ロ) (同) (三) (三) (三) (○) (○)

Ecological vs. experiential (economic) optimum

Figure 3: The structural resilience of the IO economies (2014)

Structural properties of the IO economies

Figure 4: Countries' redundancy and efficiency (2014)

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● □ ● ● ● ●

The dynamic of resilience indicators

Figure 5: The evaluation of experiential (economic) optimum (2000-2014)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ ○ < ○

Test the analogy

Figure 6: The correlation between resilience indicator and openness

Test the analogy (2)

Table 1: Regression table for the connection between structural properties (redundancy and efficiency) and openness (the level of self-sufficiency and international trade)

	Pooled	Panel A1	Panel A2	Panel A3	Panel A4
Intercept	1.080E-01*** (1.662E-03)				
OPEN	9.414E-02*** (5.844E-03)	7.383E-02*** (2.600E-02)	7.612E-02*** (2.627E-02)	7.965E-02*** (2.524E-02)	9.169E-02*** (2.605E-02)
GDPPC	1.670E-07*** (4.108E-08)		-4.227E-07*** (1.349E-07)	-3.930E-07*** (1.314E-07)	-3.651E-07*** (1.284E-07)
EMP	3.842E-05*** (5.538E-06)		· · · ·	7.277E-05 (1.620E-04)	-1.544E-04** (7.421E-05)
CAPITAL	-1.015E-04 (7.749E-05)			· · · ·	4.703E-04*** (6.554E-05)
Country FE	No	Yes	Yes	Yes	Yes
Year FE	No	Yes	Yes	Yes	Yes
Adj. <i>R</i> ² F-stat	0.3964 106.7514	0.0405 84.1537	0.0927 61.9026	0.0984 43.0833	0.1722 48.4821

Resilience and self-organization

Table 2: Regression table for the connection between resilience and self-organization

	Pooled	Panel A1	Panel A2	Panel A3	Panel A4
Intercent	9 980F-01***	T allor / IT	T GHOT AL	i anei / io	T unor / H
intercept	(7 524E-04)				
FCI	1 2065 02	7 7425 02*	9 7925 02**	9 625E 02**	1 1/15 01**
101	(1 597E 02)	(4 002E 02)	(2 688E 02)	(2 921E 02)	(4 520E 02)
0	(1.507 L-02)	(4.0022-02)	(3.000L-02)	(3.0312-02)	(4.5202-02)
FCI ²	-2.302E-02	-3.174E-01**	-3.575E-01**	-3.475E-01**	-5.236E-01**
	(8.460E-02)	(1.558E-01)	(1.445E-01)	(1.559E-01)	(2.052E-01)
GDPPC	-2.839E-08***		-5.744E-08	-5.901E-08	-5.316E-08
	(6.778E-09)		(4.708E-08)	(4.925E-08)	(4.804E-08)
EMP	1.040E-06		. ,	-3.982E-06	-3.480E-05*
	(1.073E-06)			(1.372E-05)	(1.978E-05)
CAPITAL	-1.047E-05				7.816E-05*
	(1.224E-05)				(4.671E-05)
Country FE	No	Yes	Yes	Yes	Yes
Year FE	No	Yes	Yes	Yes	Yes
Adj. R ²	0.0522	-0.0643	-0.0499	-0.0513	-0.0289
F-stat	8.0891	9.5564	9.4705	7.1393	8.5810

Resilience and self-organization (2)

Optimal self-organization

Figure 8: The level of countries' self-organization (2014)

Discussion

- Optimum: ecological vs. experiential
 - Fath (2015) discussed in detail
 - Higher redundancy: sectoral IO data are very aggregated data denser network
 - Experiential optimum: not stable weaken the barriers
- Self-organization
 - Openness influnces negatively the cycling index (Braun et al., 2021)
 - Countries with effective (redundant) structure and low (higher) cycling - reduce (increase) the level of international trade
 - Countries with redundant structure and low cycling deeper structural changes are needed
- Policy implications
 - The results shed light on which country has to reduce the exposure of international trade and which country has to increase the specialization
 - Where is it necessary to strengthen/weaken the level of self-organization?

Thank you for your attention!

All coments and questions are welcome!

Erik Braun braun.erik@pte.hu

Check our latest papers

- Braun, E. Sebestyén, T. Kiss, T. (2021): The strength of domestic production networks: an economic application of the Finn cycling index. *Applied Network Science* 6(1) 1-26.
- Iloskics, Z. Sebesytén, T. Braun, E. (2021): Shock propagation channels behind the global economic contagion network. The role of economic sectors and the direction of trade. *PLoS one* 16(10) e0258309.

IN A B N A B N A C

UNIVERSITY OF PÉCS

Faculty of Business and Economics