Measuring structural resilience of economies
Globalization or deglobalization?

Tibor Kiss 1,2 Tamás Sebestyén 1,2,3 Erik Braun 1,2,3

1University of Pécs, Faculty of Business and Economics
2University of Pécs, Faculty of Business and Economics, EconNet Research Group
3MTA-PTE Innovation and Economic Growth Research Group

Hungarian Regional Science Association 19th Annual Meeting
Budapest, November 5, 2021
Agenda

Introduction
 Motivation

Methods
 The IO network
 Measuring structural resilience
 Measuring self-organization

Data

Results
 The structural resilience of the IO economies
 The dynamic of resilience indicators
 Globalization and deglobalization
 Resilience and self-organization

Discussion
Motivation

Highly globalized international trade vs self-sufficiency

- To make production processes more efficient: specialization, division of labor
- The role of intermediate goods in trade (Johnson and Noguera, 2012; Baldwin and Lopez Gonzales, 2015) and the length of GVC’s has increased (Wang et al., 2017)
- The high level of interconnectedness between countries goes hand in hand with the rapid spread of shocks (Fang et al., 2020; Iloskics et al., 2021) in which the structural properties of international linkages have a huge impact (Barrot et al., 2020; Guan et al., 2020)
- The exposure to foreign trade relations carries a high risk (Barrot et al., 2020; Bonadio et al., 2021; Fang et al., 2020; Guan et al., 2020) and the need for self-sufficiency increases (Braun et al., 2021)
- However, backshoring, nearshoring (Piatanesi and Arauzo-Carod, 2019) and for example, in the case of COVID, ”renationalizing” (Barrot et al., 2020) do not necessarily make economies less vulnerable
There is an obvious trade-off between efficiency gains from openness (highly globalized international trade) and high risks from dependence on global value chains (self-sufficiency).
Resilience

The responsiveness of countries to shocks might depend on the resilience of the countries

- Resilience could mean the ability to react to shocks (Reggiani et al., 2002; Annarelli and Nonino, 2016)

- Ecological Network Analysis (ENA) contributes to resilience research (Ulanowicz, 2009) - can also be applied to economic IO data (Kharraz et al., 2013; Fath, 2015; Chatterjee and Layton, 2020)

- A system’s (economy’s) resilience level derives from the two structural properties: efficiency and redundancy
 - None of the full efficiency and full redundancy is a good solution
 - An efficient system has only a few mutual relationships, which indicates strong specialized trade flows and corresponds to highly globalized production processes
 - A redundant system has many more similarly weak connections signaling a less specialized and embedded position of elements within the system, corresponding to a lower level of involvement within the international division of labor
The IO network

The IO system

<table>
<thead>
<tr>
<th></th>
<th>w_1</th>
<th>w_2</th>
<th>...</th>
<th>w_i</th>
<th>E_i</th>
<th>O_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>$w_{1,1}$</td>
<td>$w_{2,2}$</td>
<td>...</td>
<td>$w_{i,1}$</td>
<td>e_1</td>
<td>o_1</td>
</tr>
<tr>
<td>w_2</td>
<td>$w_{1,2}$</td>
<td>$w_{2,2}$</td>
<td>...</td>
<td>$w_{i,2}$</td>
<td>e_2</td>
<td>o_2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>w_j</td>
<td>$w_{1,j}$</td>
<td>$w_{2,j}$</td>
<td>...</td>
<td>$w_{i,j}$</td>
<td>e_j</td>
<td>o_j</td>
</tr>
<tr>
<td>M_j</td>
<td>m_1</td>
<td>m_2</td>
<td>...</td>
<td>m_j</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I_j</td>
<td>l_1</td>
<td>l_2</td>
<td>...</td>
<td>l_j</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- The rows and columns are the economic sectors
- $w_{i,j}$ shows the trade flow from sector i to sector j
- E_i is the export of sector i
- O_i is the out of sector i
- M_j is the import of sector j
- I_j is the other input of sector j
- $i, j = 1, 2, \ldots n$
Measuring structural resilience

Based on Ulanowicz (2009) & Chatterjee and Layton (2020)

- **Total System Throughput (TST)**

 \[
 TST = \sum_{i=0}^{n+2} \sum_{j=0}^{n+2} T_{i,j}
 \]

- **Average Mutual Information (AMI)**

 \[
 AMI = \sum_{i=0}^{n+2} \sum_{j=0}^{n+2} \frac{T_{i,j}}{TST} \log_2 \left(\frac{T_{i,j} \times TST}{T_i \times T_j} \right)
 \]

 where

 \[
 T_i = \sum_{j=0}^{n+2} T_{i,j} \quad \text{and} \quad T_j = \sum_{i=0}^{n+2} T_{i,j}
 \]

- **Shannon Index (H)**

 \[
 H = -\sum_{i=0}^{n+2} \sum_{j=0}^{n+2} \frac{T_{i,j}}{TST} \log_2 \left(\frac{T_{i,j}}{TST} \right)
 \]
Measuring structural resilience (2)

- Degree of System Order, i.e. structural resilience indicator (α)
 \[\alpha = \frac{AMI}{H} \]
 (4)

- Ecological Fitness Function (R_{eco})
 \[R_{eco} = -\left(\frac{AMI}{H}\right) \ln \left(\frac{AMI}{H}\right) \]
 (5)

 and the maximum of $R_{eco} = 1/e = 0.368$ ($e = 2.7183$, Euler's Number)

- Fitness for Evolution (F_s)
 \[F_s = -e^{\alpha^\beta} \log \left(\alpha^\beta\right) \]
 (6)

 where β is a coefficient, which serves to adjust the optimal α value
Ecological optimum for resilience on redundancy-efficiency scale

Figure 1: Resilience and redundancy-efficiency structure
An example

Figure 2: Network illustration for resilience

<table>
<thead>
<tr>
<th></th>
<th>Network a)</th>
<th>Network b)</th>
<th>Network c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.0722</td>
<td>0.3147</td>
<td>0.5183</td>
</tr>
<tr>
<td>Fitness</td>
<td>0.1899</td>
<td>0.3638</td>
<td>0.3406</td>
</tr>
</tbody>
</table>
Self-organization

Based on Finn (1976)

- Construct Leontief-inverse matrix \(\mathbf{L} \), where \(\mathbf{I} \) is the identity matrix

\[
\mathbf{L} = (\mathbf{I} - \mathbf{W})^{-1}
\]

(7)

- The sectoral-level cycling index \(FCI_i \)

\[
\hat{l}_i = \frac{l_{ii} - 1}{l_{ii}}
\]

\[
FCI_i = \hat{l}_i \frac{T_i}{\sum_i T_i}
\]

(8)

(9)

- The country-level cycling index \(FCI \)

\[
FCI = \sum_{i=0}^{n} FCI_i
\]

(10)
Data

- Trade flows and IO data: WIOD (Release 2016)
 - 43 countries, 56 sectors per country
 - Years: 2000-2014
 - We create domestic IO tables and sum imports, exports, other inputs and outputs into one-one column
 - Openness: the imported inputs divided by the total input, weighted by the size (total output) of the sectors

- Macroeconomic data: Penn World Tables (9.1 version)
 - GDPPC: real GDP at chained PPPs (in thousands bil. 2011 US dollar, per capita)
 - EMP: employment (in millions)
 - CAPITAL: capital stock at current PPPs (in thousands bil. 2011 US dollar)
Ecological vs. experiential (economic) optimum

Figure 3: The structural resilience of the IO economies (2014)
Figure 4: Countries’ redundancy and efficiency (2014)
The dynamic of resilience indicators

Figure 5: The evaluation of experiential (economic) optimum (2000-2014)
Test the analogy

Figure 6: The correlation between resilience indicator and openness
Table 1: Regression table for the connection between structural properties (redundancy and efficiency) and openness (the level of self-sufficiency and international trade)

<table>
<thead>
<tr>
<th></th>
<th>Pooled</th>
<th>Panel A1</th>
<th>Panel A2</th>
<th>Panel A3</th>
<th>Panel A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1.080E-01***</td>
<td>7.383E-02***</td>
<td>7.612E-02***</td>
<td>7.965E-02***</td>
<td>9.169E-02***</td>
</tr>
<tr>
<td></td>
<td>(1.662E-03)</td>
<td>(2.600E-02)</td>
<td>(2.627E-02)</td>
<td>(2.524E-02)</td>
<td>(2.605E-02)</td>
</tr>
<tr>
<td>OPEN</td>
<td>9.414E-02***</td>
<td>7.383E-02***</td>
<td>7.612E-02***</td>
<td>7.965E-02***</td>
<td>9.169E-02***</td>
</tr>
<tr>
<td></td>
<td>(5.844E-03)</td>
<td>(2.600E-02)</td>
<td>(2.627E-02)</td>
<td>(2.524E-02)</td>
<td>(2.605E-02)</td>
</tr>
<tr>
<td></td>
<td>(4.108E-08)</td>
<td>(1.349E-07)</td>
<td>(1.314E-07)</td>
<td>(1.284E-07)</td>
<td>(1.284E-07)</td>
</tr>
<tr>
<td>EMP</td>
<td>3.842E-05***</td>
<td>7.277E-05</td>
<td>-1.544E-04**</td>
<td>-1.544E-04**</td>
<td>4.703E-04***</td>
</tr>
<tr>
<td></td>
<td>(5.538E-06)</td>
<td>(1.620E-04)</td>
<td>(7.421E-05)</td>
<td>(7.421E-05)</td>
<td>(7.421E-05)</td>
</tr>
<tr>
<td>CAPITAL</td>
<td>-1.015E-04</td>
<td>4.703E-04***</td>
<td>4.703E-04***</td>
<td>4.703E-04***</td>
<td>4.703E-04***</td>
</tr>
<tr>
<td>Country FE</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Adj. R^2</td>
<td>0.3964</td>
<td>0.0405</td>
<td>0.0927</td>
<td>0.0984</td>
<td>0.1722</td>
</tr>
<tr>
<td>F-stat</td>
<td>106.7514</td>
<td>84.1537</td>
<td>61.9026</td>
<td>43.0833</td>
<td>48.4821</td>
</tr>
</tbody>
</table>
Table 2: Regression table for the connection between resilience and self-organization

<table>
<thead>
<tr>
<th></th>
<th>Pooled</th>
<th>Panel A1</th>
<th>Panel A2</th>
<th>Panel A3</th>
<th>Panel A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>9.980E-01***</td>
<td>7.742E-02*</td>
<td>8.783E-02**</td>
<td>8.625E-02**</td>
<td>1.141E-01**</td>
</tr>
<tr>
<td></td>
<td>(7.524E-04)</td>
<td>(4.002E-02)</td>
<td>(3.688E-02)</td>
<td>(3.831E-02)</td>
<td>(4.520E-02)</td>
</tr>
<tr>
<td>FCI</td>
<td>1.296E-02</td>
<td>8.783E-02**</td>
<td>8.625E-02**</td>
<td>1.141E-01**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.587E-02)</td>
<td>(3.688E-02)</td>
<td>(3.831E-02)</td>
<td>(4.520E-02)</td>
<td></td>
</tr>
<tr>
<td>FCI^2</td>
<td>-2.302E-02</td>
<td>-3.575E-01**</td>
<td>-3.475E-01**</td>
<td>-5.236E-01**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8.460E-02)</td>
<td>(1.445E-01)</td>
<td>(1.559E-01)</td>
<td>(2.052E-01)</td>
<td></td>
</tr>
<tr>
<td>GDPPC</td>
<td>-2.839E-08***</td>
<td>-5.744E-08</td>
<td>-5.901E-08</td>
<td>-5.316E-08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6.778E-09)</td>
<td>(4.708E-08)</td>
<td>(4.925E-08)</td>
<td>(4.804E-08)</td>
<td></td>
</tr>
<tr>
<td>EMP</td>
<td>1.040E-06</td>
<td>-3.982E-06</td>
<td>-3.480E-05*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.073E-06)</td>
<td>(1.372E-05)</td>
<td>(1.978E-05)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPITAL</td>
<td>-1.047E-05</td>
<td></td>
<td>7.816E-05*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.224E-05)</td>
<td></td>
<td>(4.671E-05)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country FE</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Adj. R^2</td>
<td>0.0522</td>
<td>-0.0643</td>
<td>-0.0499</td>
<td>-0.0513</td>
<td>-0.0289</td>
</tr>
</tbody>
</table>
Resilience and self-organization (2)

Figure 7: The optimal level of self-organization
Optimal self-organization

Figure 8: The level of countries’ self-organization (2014)
Discussion

- Optimum: ecological vs. experiential
 - Fath (2015) discussed in detail
 - Higher redundancy: sectoral IO data are very aggregated data - denser network
 - Experiential optimum: not stable - weaken the barriers

- Self-organization
 - Openness influences negatively the cycling index (Braun et al., 2021)
 - Countries with effective (redundant) structure and low (higher) cycling - reduce (increase) the level of international trade
 - Countries with redundant structure and low cycling - deeper structural changes are needed

- Policy implications
 - The results shed light on which country has to reduce the exposure of international trade and which country has to increase the specialization
 - Where is it necessary to strengthen/weaken the level of self-organization?
Thank you for your attention!

All comments and questions are welcome!

Erik Braun
braun.erik@pte.hu

Check our latest papers
