

MAGYAR TUDOMÁNYOS AKADÉMIA KÖZGAZDASÁG- ÉS REGIONÁLIS TUDOMÁNYI KUTATÓKÖZPONT KÖZGAZDASÁG-TUDOMÁNYI INTÉZETE

Social network fragmentation enlarges income inequalities

Gergő Tóth^{1,2}, Johannes Wachs³, Bence Ságvári^{1,4}, János Kertész^{3,5}, Balázs Lengyel^{1,4}

¹ MTA ANET Lab, ² UCD Spatial Dynamics Lab, ³ CEU DNS, ⁴ IBS, ⁵ BME

MRTT, 10.18. 2018. Kecskemét

Inequalities on the rise

Deeply rooted sources of inequalites

Philip S. Chodrow PNAS 2017;114:44:11591-11596

New York

O Detroit

85 90

Chicago O

8°

Los Angeles

00 0

Philadelphia, k = 11(b)

How do social networks influence inequalities?

Coscia-Cheston-Hausman (2017). HKS WP

DUTCH MUNICIPALITIES (OSN)

Norbutas-Corten (2018) Social Networks

BRITISH INDIVIDUALS (CDR)

Eagle-Macy-Claxton (2010) Science

Endogenous Network Inequalities

Data - iWiW

- 2.7 million individuals in 2557 towns
- pre-Facebook: no friend recommendation
- offline social connections reported online

Data on inequality

- TEIR: wage groups population, gross income
- Towns that have more than 2,500 inhabitants (Budapest excluded)
- 2011, 2016

Social network variables

Network variables and inequality

Social network fragmentation enlarges income inequalities

Sources of network fragmentation

1. RDI (rail-road-river division)

2. Educational fragmentation

Coefficient of variance of math scores at 6th grade

3. Political fractionalization

Coefficient of variation of Fidesz share in voting districts

4. Religious fractionalization

Entropy of religious population across different churches

IV estimation – 2SLS

 γ_i Fragmentation_i = $\pi_0 + \pi_1$ Educationalal fragmentation_i + π_2 Geographical fragmentation_i + π_3 Religious fractionalization_i

+ $\pi_4 \text{Political fractionalization}_i + \upsilon$

 $\text{GINI}_{i,2016} = \gamma_0 + \gamma_1 \text{Fragmentation}_i + \text{logpop}_i + u$

	Dependent variable GINI ₂₀₁₆					
	(1) OLS	(2) 2SLS	(3) OLS	(4) 2LSL	(5) OLS	(6) 2SLS
Average path length	0.0750***	0.103***				
	(0.010)	(0.014)				
Fragmentation			0.138***	0.495***		
			(0.031)	(0.087)		
Transitivity					-0.0926***	-0.235***
					(0.034)	(0.062)
log population	-0.00987***	-0.0167***	0.00381**	-0.00769**	-0.00222	-0.0183***
	(0.003)	(0.004)	(0.002)	(0.003)	(0.004)	(0.007)
Constants	0.394***	0.388***	0.409***	0.407***	0.531***	0.716***
	(0.012)	(0.012)	(0.012)	(0.014)	(0.045)	(0.081)
\mathbb{R}^2	0.199	0.177	0.084	-0.209	0.055	0.020
adj. R ²	0.197	0.174	0.081	-0.213	0.052	0.017
Wald F test for weak IV		13.10		54.84		41.39
Ν	591	591	591	591	591	591

Statistics robust to heteroscedasticity, standard errors in parentheses * p<0.10, ** p<0.05, *** p<0.01

Conclusions

• Network fragmentation has multiple sources and is deeply rooted in the history of society.

• If income inequalities are present, fragmented social networks increase them further.

ANET Lab MTA KRTK Lendület Research Group 2017-2022

Thank you for your attention!

www.anet.krtk.mta.hu

lengyel.balazs@krtk.mta.hu

Question of representativity

