

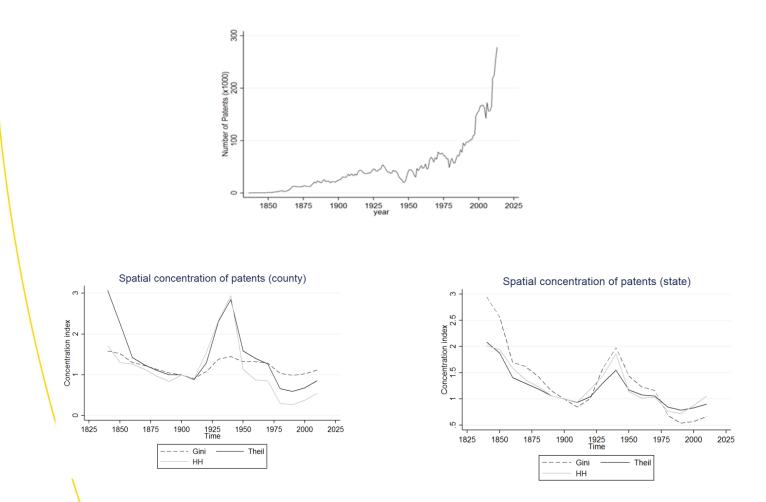
Dario Diodato - Harvard Andrea Morrison - Utrecht

Technological regimes and the long-run dynamics of patents' spatial patterns

John von Neumann University Kecskemét, 18–19 October 2018

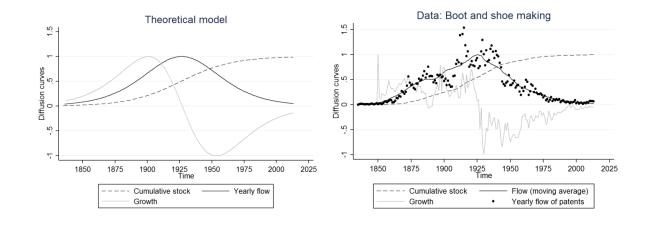
Motivation

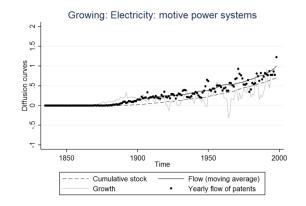
- About 20 years ago, evolutionary economics put the spotlight on the Schumpeterian patterns of innovation (Breschi, Malerba and Orsenigo, 2000)
- Two patterns are identified
 - Schumpeter Mark I widening
 - Schumpeter Mark II deepening
- This literature links these patterns to general characteristics of technology, known as:
 - technological regimes (opportunity, cumulativeness, appropriability, and property of the knowledge base)

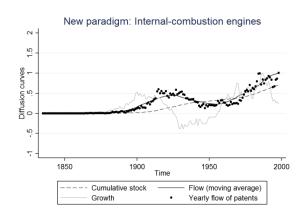


Motivation

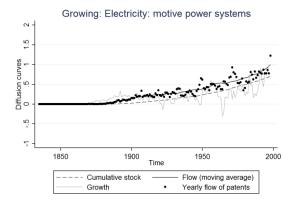
- Today, an emerging literature in the Geography of Innovation is trying to make sense of the complex spatial patterns of innovation
- While economic geography prioritized understanding the regional innovation trajectories through path-dependence, we argue that technological regimes can be complementary in explaining spatial patterns of innovation.
- While the idea is not new (Breschi, 2000; Audretsch and Feldman, 1996), we are able to track the spatial dimension of innovation cycle on the very long run, thanks to the HistPat dataset (Petralia, Balland, and Rigby, 2016)
- In this analysis, we link spatial patterns of innovation to technological regimes to reveal that changes in technological regimes *within* technology over the long run are just as important as differences *between* technologies

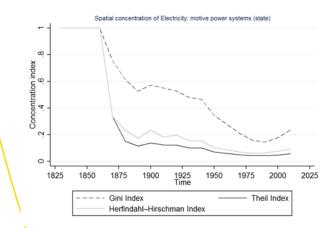


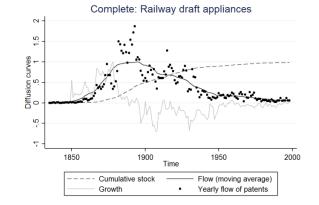

Long run changes

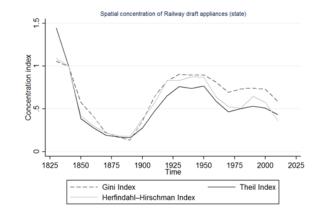


Long run changes









Long run changes

Stylized framework

		Spatial Pattern of Innovation		
Technological Regime		Expected impact on		
		Spatial Concentration	Spatial Entry	Stability
Ор	portunity	+/-	-/+	+/-
Ар	propriability	+	-	+
Cumulativeness		+	_	+
Со	mplexity	+	-	+

Empirical design

 In essence, the main aim of the analysis is to attempt to understand empirically the changing spatial patterns of technologies. We estimate

 $SP_{ct} = \beta_0 + \beta_1 Cumulat_{ct} + \beta_2 Approp_{ct} + \beta_3 Complex_{ct} + \varepsilon_{ct}$

 Where SP is a spatial pattern (spatial concentration, spatial entry, or stability of regions' ranking), c are technological classes and t is time.

Data

- Data on US patents with geographical information from 1836 to 1975: Petralia, Balland, and Rigby (2016)
- From 1975 to 2010 the data are integrated with NBER patent dataset
- The dataset distinguishes between 438 consistently coded USPTO technological classes
- Similarly, it is uses modern county definition (3240 counties) for historical data to achieve consistency in the spatial classification
- For NBER dataset also inventors and citations are available (used for some analysis)

Definition of variables - Dependent variables

 With c as USPTO class and t as decade. All dependent variables are computed at state and county level.

Spatial concentration

- \succ We use multiple indicators (${\rm Theil}_{\rm ct}$, ${\rm HH}_{\rm ct}$, ${\rm Gini}_{\rm ct}$)
- > Availability: 1830-2010

• Spatial Entry

- > Number of regions patenting for the first time in that year
- > Availability: 1830-2010

Stability of innovators (regions)

- Spearman-rank correlation between two 5-year periods in the decade t
- > Availability: 1840-2010

Definition of variables - independent variables

Opportunity

- > Measured as number of patents in c, t (Park and Lee, 2006)
- > Availability: 1830-2010

Cumulativeness

- Share of innovators that have registered more than 4 patents in both 5-year periods within the decade (Park and Lee, 2006)
- Availability: 1970-1990

Appropriability

- Measured as self-citation over total citations of (c, t) (Park and Lee, 2006)
- > Availability: 1960-1990

• Complexity

- Measured as average number of secondary classifications for primary class c (in t)
- > Availability: 1830-2010

Stylized framework

		Spatial Pattern of Innovation		
		Concentration	Entry	Stability
Тес	hnological Regime			
Ор	ortunity	+/-	-/+	+/-
App	propriability	+	-	+
Cur	nulativeness	+	-	+
Cor	nplexity	+	-	+

Baseline model

	(1)	(2)	(3)	
VARIABLES	Concentration	Entry	Sability	
l_opportunity	-0.352***	0.619***	0.108***	
	(0.0318)	(0.0344)	(0.0134)	
l_approp	-0.0493**	0.0552**	-0.0160	
	(0.0224)	(0.0236)	(0.0120)	
l_cumulat	0.0578***	-0.0267	0.0238***	
	(0.0158)	(0.0172)	(0.00791)	
l_complex	0.0603	0.181**	-0.0550	
	(0.0771)	(0.0833)	(0.0336)	
Constant	-2.413***	-0.111	-0.970***	
	(0.237)	(0.278)	(0.0986)	
Observations	1,262	1,262	1,254	
R-squared	0.465	0.694	0.346	
Number of c	426	426	422	

Interaction term

	(1)	(2)	(3)
VARIABLES	Concentration	Entry	Stability
l_opportunity	-0.541***	0.532***	0.114***
	(0.0126)	(0.0131)	(0.00477)
l_approp	0.308***	-0.415***	-0.0261**
	(0.0482)	(0.0358)	(0.0110)
l_cumulat2	0.420***	-0.250***	0.0260***
	(0.0258)	(0.0207)	(0.00740)
l_complex	0.136***	0.101***	0.0374***
	(0.0404)	(0.0384)	(0.0122)
Apprcumu	0.101***	-0.106***	-0.00935***
	(0.0120)	(0.00960)	(0.00329)
Constant	-0.206	-0.348***	-1.137***
	(0.133)	(0.119)	(0.0397)
Observations	1,262	1,262	1,254
Degrad	0.745	Econor	nic Geography, Utrecht Uni

Lagged variables

	(1)	(2)	(3)	
VARIABLES	Concentration	Entry	Stability	
l_L_opportunity	-0.595***	0.536***	0.115***	
	(0.0179)	(0.0225)	(0.00511)	
l_L_approp	-0.106***	-0.0354	-0.000793	
	(0.0351)	(0.0389)	(0.00964)	
l_L_cumulat2	0.235***	-0.0482**	0.0442***	
	(0.0152)	(0.0191)	(0.00465)	
l_L_complex	0.124**	0.00463	0.0511***	
	(0.0614)	(0.0689)	(0.0162)	
Constant	-0.696***	0.266	-1.100***	
	(0.153)	(0.189)	(0.0429)	
Observations	1,262	1,262	1,254	
R-squared	0.642	0.602	0.686	

•

- **Opportunities** is positively linked with Entry as expected, but surprisingly also with Stability
- Results for **appropriability** are less straightforward
 - Increase in rents, but also competition effect
 - expected sign when Apprcumu interaction is included
- **Cumulativeness** works as expected: more concentration, less entry, higher stability
 - In line with expectations, **complexity** is positively linked with concentration and stability, but also with entry
 - this association however fades when lagging the independent variables. This reveal the reverse causality between entry and complexity: entry of new regions - with presumably different technological background makes technology more complex!

Conclusion

- We link the evolution of spatial patterns of innovation to four technological regimes
- We find evidence that all four regimes (opportunity, cumulativeness, appropriability, complexity) influence spatial patterns
- The effect of opportunity is the strongest
- Since generally opportunity grows and the declines during the life cycle, spatial concentration first falls and then rises again
- Complexity, appropriability and cumulativeness appear with some exceptions - to coherently push towards a deepening pattern.

Thanks for your attention

a.morrison@uu.nl