Impact assessment of alternative smart specialization policies for Hungarian NUTS 3 regions

> Attila Varga, Norbert Szabó, Tamás Sebestyén

Regional Innovation and Entrepreneurship Research Center (RIERC) University of Pécs, Hungary

Outline

- Introduction
- Economic impact assessment of smart specialisation policies
- Economic models for impact assessment
- The GMR-Hungary policy impact assessment model
- Illustrative policy simulations
- Summary

Introduction

- Cohesion Policy 2014-2020: regional smart specialisation strategies (S3) become a condition for ERDF funding
- Smart specialisation policy aims at supporting growth by enabling each region to identify and develop its own competitive advantages
- S3 is a bottom-up development concept: pockets of potential future innovations (discoveries) developed by entrepreneurs may result in a change of the region's future industrial structure
- Government: selects from alternatives (prioritisation) for policy support
- The method suggested in the S3 literature for economic impact assessment of the discoveries needs further development
- This presentation argues that economic impact models can play a significant role in the assessment of smart specialisation policies

Economic impact assessment in the selection from alternative discoveries

- Economic impact assessment: the estimation of the likely impacts of S3 on variables (like GDP, employment or wages) at the regional and supra-regional levels
- The suggested approach for economic impact assessment in the smart specialisation literature: estimation of 'direct and indirect resource inputs from both the private and public sector suppliers' (Foray et al. 2011, p. 13).
- This approach identifies impacts with the so-called "backward linkages".
- However this approach covers impacts only partially

Structural decompositon analysis¹

- A comparative static method to identify the factors that contribute to sectoral/regional/national growth
- Numerical calculation of the amount of their contribution to total impact based on I-O data
- The demand side approach aims to break down aggregate output growth into changes in final demand, purchase structure

Decomposition of the demand-side impact of a policy supporting a particular industry (investment subsidy)

1) Backward linkages

 The indirect effects of policy shock throught input-output linkages between industries

2) Investment demand effect

The impact of increased investment demand on output

3) Income effect

The effects of increased capital income, indirect tax revenues and savings

4) Changes in **interregional trade**

 The effects of increased domestic demand outside the region for local goods (as a result of higher local productivity)

5) Changes in **international trade**

 The effects of increased foreign demand for local goods (as a result of higher local productivity)

Demand side impact decomposition: an example

-0,005%

■ TRADE ■ INV ■ INC ■ EXP SBWL

Economic models for S3 impact assessment

- Much broader economic impacts can be estimated with economic models
- Suitable economic impact models should incorporate
 - the regional dimension (S3 interventions address regional development)
 - interregional interactions (trade, migration, technology spillovers)
 - industrial dimension of the regional economy (S3 interventions address selected industrial sectors)
- With multi-regional, multi-sectoral models the economic impacts of different development scenarios became comparable both at the regional and at the supra-regional levels

The GMR-Hungary policy impact assessment model

- **GMR**: Geographic Macro and Regional model
- GMR-models: EcoRET model (Varga, Schalk 2004), GMR-Hungary (Varga 2007, Varga, Járosi, Sebestyén 2013), GMR-Europe (Varga 2017, Varga, Járosi, Sebestyén, Szeb 2015), GMR-Turkey (Varga, Baypinar 2016)
- Selected applications:
 - Cohesion Policy impact assessment for the Hungarian government (since 2004 continuously)
 - Cohesion Policy impact assessment for the European Commission (DG Regio, 2011)
 - FP6 impact assessment (2010)
 - policy impact assessment on Turkish regions (2014)

The GMR-Hungary model

The regional SCGE block

- A recursive dynamic **multisectoral** spatial computable general equilibrium model
- Spatial:
 - Transportation cost (iceberg)
 - Interregional trade
 - Labour migration
 - Interregional capital re-allocation
- General equilibrium:
 - Utility maximazing households
 - Investment decisions
 - Government optimization
 - Production side (perfect competition)
 - Foreign markets (partially exogenous)
- Model features: it runs in GAMS, calibated for 2010 with an estimated Hungarian multiregional input-output table for 20 Hungarian NUTS 3 regions and 39 NACE rev 2 industries

Illustrative policy simulations

- Example: applications in Hungarian regions and industries
- Based on available funds for regions and an estimated time schedule for investment between 2014 and 2023
- Data collected from EU Commission, Hungarian EMIR database
- Total funding: 25 billion EUR
- Only considered "physical investments" for the period between 2014-2020 (~1150 m EUR)
- For physical investment for the competitiveness of producers: 320 million EUR
- In the simulations we allocated **12 million EUR** for each regionally highly embedded industrial sector in each region

Investment shocks to the selected industries (Million HUF)

Selection of industrial sectors for smart specialisation

- McCann Ortega-Argilés (2015): a specilisation is smart if the region diversifies into sectors which are closely related to the dominant (i.e., highly embedded) industries of the region. This results in high regional knowledge spillovers.
- The density of input-output linkages with the rest of the region's industries measures embeddedness in this context
- We measure embeddeddness by the concept of network centrality
- Centrality: how central, how important a given node is within the network
- Different centrality measures exist: degree, closeness, betweenness, etc.

Selection of industrial sectors for smart specialisation

- Connection to input-output analysis
 - An IO table describes the structure of the network where nodes are sectors and connections are product flows between these sectors
- We apply the Eigenvector centrality measure²
 - The centrality score of a given node depends on the centrality score of its neighbours
 - This is a comprehensive measure of centrality, showing the *importance* of a node, not simply the *number of its links* (degree) or *location* within the network (closeness)
 - In an indirect way it captures the structure of the whole network

² Bonacich (1972), Bonacich (2007)

The most embedded (central) sectors selected

- Baranya
 - Agriculture
 - Electricity, gas, steam and air conditioning supply
 - Public administration and defense; compulsory social security
- Budapest
 - Financial and insurance activities
 - Legal and accounting activities; activities of head offices; management consultancy activities and architectural and engineering activities; technical testing and analysis
 - Transportation and storage
- Győr-Moson-Sopron
 - Electricity, gas, steam and air conditioning supply
 - Real estate activities
 - Manufacture of motorvehicles and other transport equipments

The smart specialisation simulations

- The government's problem: selection of one discovery (an innovative idea) for each region to support from the set of discoveries suggested by entrepreneurs
- In the first stage governments select those discoveries that diversify the three most embedded sectors (following McCann - Ortega Argilés 2015)
- Then there is a need for economic impact assessments in order to select the final discovery for each region
- In the GMR-simulations we assume that the same amount of public venture capital investment is needed for the support of each discovery
- We run the GMR-Hungary model to estimate the GDP impacts of alternative investment supports
- The model calculates regional and national effects of the alternative policies

Growth of GDP in Budapest

GDP growth in Baranya

GDP growth in Győr-Moson-Sopron

0,160%

Impact on national output by scenarios

Summary

- Economic impact assessment plays a central role in S3 prioritisation
- Economic effects estimated on the basis of 'backward linkages' are narrow compared to the full set of impacts - economic models estimate much broader impacts
- Illustrative smart specialisation policy impact assessments with the GMR-Hungary economic model
- The estimation of comparable regional, industrial and macroeconomic effects of alternative smart specialisation policies generate important information for policy makers

References

- Miller, Ronald E. Peter D. Blair (2009): Structural Decomposition, Mixed and Dynamic Models. IN: Miller Blair Input-Output Analysis: Foundations and Extensions. Cambridge University Press, 2nd Edition, pp. 593-668.
- Rose, Adam Stephten Casler (1996): Input-output structural decomposition analysis: A Critical Appraisal. Economic System Research, Vol. 8, No. 1. pp. 33-62.
- Dietzenbacher, Erik Bart Los (1998): Structural Decomposition Techniques: Sense and Sensitivity. Economic System Research, Vol. 10, No. 4. pp. 307-323.
- Miller, Ronald E. Peter D. Blair (2009): Structural Decomposition, Mixed and Dynamic Models. IN: Miller Blair Input-Output Analysis: Foundations and Extensions. Cambridge University Press, 2nd Edition, pp. 593-668.
- Bonacich, P. (1972) Factoring and weighting approaches to clique identification. *Journal of Mathematical Sociology* 2, 113-120.
- Bonacich, P. (2007) Some unique properties of eigenvector centrality. *Social Networks* 29, 555-564.
- Varga, A. 2007 *GMR-Hungary: A complex macro-regional model for the analysis of development policy impacts on the Hungarian economy.* PTE KTK KRTI Working Papers (2007/4).
- Varga, A. 2017 Place-based, Spatially Blind, or Both? Challenges in Estimating the Impacts of Modern Development Policies: The Case of the GMR Policy Impact Modeling Approach. *International Regional Science Review* 40, 12-37. DOI: 10.1177/0160017615571587.
- Varga, A., Baypinar, M. 2016 Economic impact assessment of alternative European Neighborhood Policy (ENP) options with the application of the GMR-Turkey model. The Annals of Regional Science 56, 153-176.
- Varga, A. and Schalk, H. 2004 Knowledge spillovers, agglomeration and macroeconomic growth. An empirical approach. *Regional Studies* 38, 977-989
- Varga, A., Járosi, P., Sebestyén, T. 2013 A 2014-20 közötti időszak ex-ante értékeléséhez a támogatások várható makrogazdasági hatásainak modellezése. A Nemzeti Fejlesztési Ügynökség NFÜ 30/2013. számú projektje keretében készült tanulmány
- Varga, A., Járosi, P., Sebestyén, T., Szerb, L. 2015 *Extension and application of the GMR-Eurozone model towards the CEE regions for impact assessment of smart specialisation policies*. GRINCOH Working Papers DOI: 10.13140/RG.2.1.5152.6567