

Hungarian Regional Science Conference 26-28 November 2014





### Static vs. Dynamic Agglomeration Economies: Spatial Context and Structural Evolution behind Urban Growth

Roberto Camagni, Roberta Capello, Andrea Caragliu

roberto.camagni@polimi.it, roberta.capello@polimi.it, andrea.caragliu@polimi.it

# Agglomeration economies and urban growth: general aim of the paper

- A lively debate exists on the relationship between agglomeration economies and urban growth.
- This paper contributes to this debate by overcoming some of the shortcuts that are present in the theoretical approaches and presents a fully dynamic approach in the explanation of urban growth.
- An empirical analysis on the European urban system of the new approach is also presented.

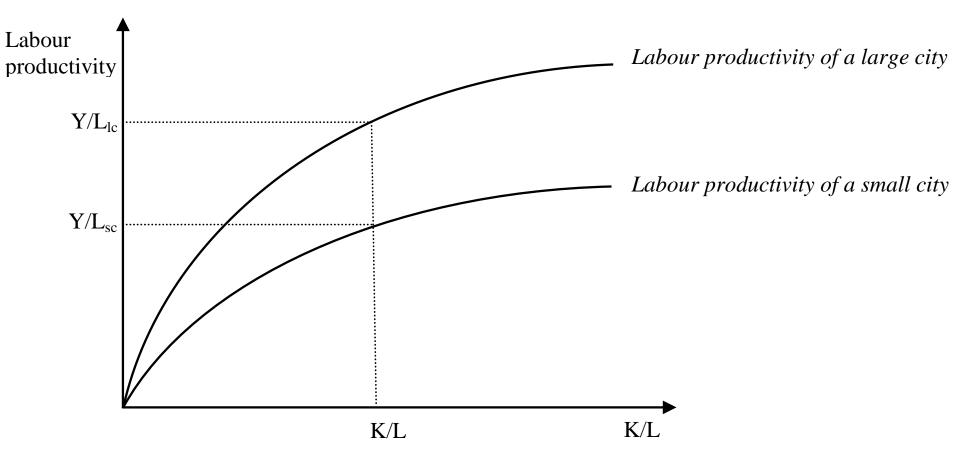


- In particular, the aim of the paper is to explain the apparent contradiction that small cities, even with their limited urban productivity, grow as well as large ones
- This aim is achieved by distinguishing between a static and a dynamic definition of urban advantage / productivity.
  - Static productivity advantages: higher productivity of large cities w.r.t. small ones at any given point in time.
  - Dynamic productivity advantages: productivity increases over time for each city size.



- The presence of a higher productivity/efficiency in larger cities is used to interpret growth: an 'equilibrium relationship' (Henderson, 2010) and a static sizeperformance correlation are misinterpreted as a causal, dynamic relationship
- Production factors determining urban productivity other than size are interpreted as perfectly malleable (dependent on urban size)
- If higher productivity of larger cities is supposed to mean higher attractiveness and, consequently, growth, this productivity should be measured through **net** urban benefits



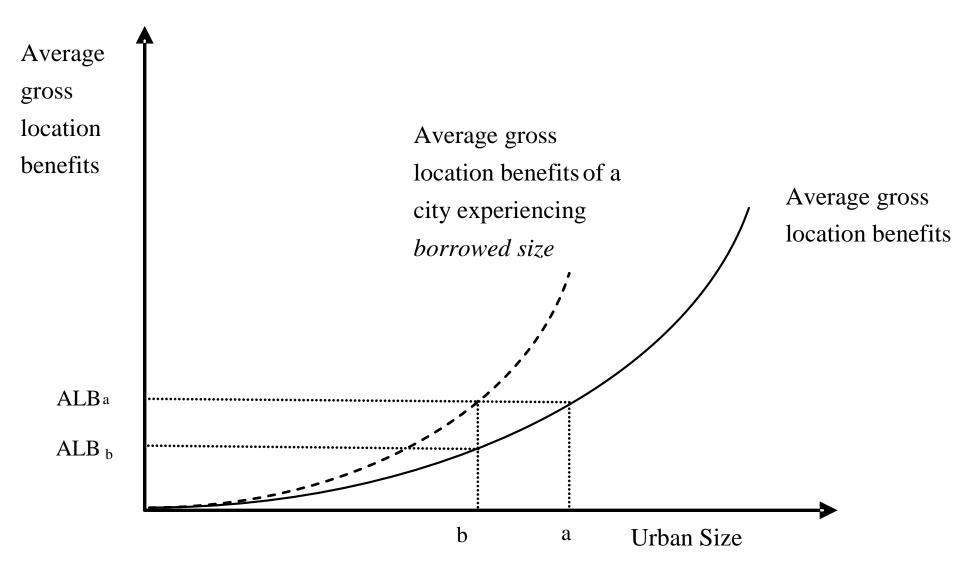

# These shortcuts are overcome by analyzing in depth what the literature says, and adding some refinements:

# Literature review

# Conceptual organization of the existing literature

- The literature on agglomeration economies highlights three aspects inherently part of this concept (Capello, 2009):
  - Indivisibilities (micro-industrial approach)
  - Physical proximity (geographical approach)
  - Synergies (macro-territorial dynamic approach)

#### The existing literature: the micro-industrial approach <sup>7</sup>




This approach has some limits:

- It (mis-)interprets urban dynamics in an indirect way:
  - large cities are more efficient;
  - therefore, they are more attractive;
  - therefore, they grow.
- It explains productivity advantages with pecuniary externalities. This implies that agglomeration is associated to clusters of firms, rather than to cities; and, that leaves totally aside the costs of urban agglomeration.

## The existing literature: the geographical approach

- The geographical approach was included as a way to overcome the unexplained evidence that small cities may grow more than large ones.
- The concept used is that of 'borrowed size' developed by Alonso (1973); "... a small city or a metropolitan area exhibits some of the characteristics of a larger one if it is near other population concentrations" (Alonso, 1973, p. 200).



10

- This theory has the following limits:
  - It assumes no threshold in urban growth;
  - It describes only static agglomeration economies for urban growth;
  - It presents the same shortcut as the previous approach: productivity advantage (through borrowed size) is equated to growth potential

## Our contributions to the geographical approach (1)

- 1. Separation between the concepts of borrowed size and borrowed functions (demand and supply effects):
  - Demographic effect ("pure borrowed size"): advantages coming from a pooled and diversified labor supply, from a larger market of final goods and also from population spillovers from larger cities
  - Functional effect ("borrowed functions"): advantages coming from a wider labor demand, from a larger accessibility to the supply of services and also from physical spatial spillovers of functions from larger cities

The two effects may have different intensities and different directions (signs) for different city sizes.

- 2. Separation between spatial and a-spatial networks.
  - Functions can be 'borrowed' also thanks to relationships and flows of a mainly horizontal and nonhierarchical nature among cities of similar size, even if located far from each other (city network theory: Camagni 1993; Boix and Trullen, 2007; Camagni and Capello, 2004).

- In the dynamic macro-territorial approach, a new perspective is adopted, allowing the identification of a direct link between dynamic agglomeration economies and urban growth.
- Agglomeration economies, as sources of growth, should be conceived in terms of **net** and not **gross** urban benefits, at a macro-urban (attractiveness) and not a micro-pecuniary level
- Other factors should be considered, together with pure size, in explaining urban efficiency levels. Changes in the intensity of these factors influence increases in agglomeration economies, *irrespective of* the size of the city.



Two groups of research questions

#### • Static agglomeration economies:

- 1. whether large cities are more productive, at increasing or decreasing rates;
- whether urban productivity is influenced by factors other than urban size, namely urban functions, 'borrowed size', 'borrowed functions', and urban network externalities;
- 3. whether these effects are mediated by city size.



- Dynamic agglomeration economies:
  - 1. whether urban productivity increases in time are related to urban size;
  - 2. whether productivity increases in time are related to the increase in the quality of functions hosted, to the increase of city networks, to the increase in 'borrowed size' or in 'borrowed functions';
  - 3. whether previous relationships hold differently for increasing city sizes

Formally, this translates into the following testable reduced forms.

A: Model for the static approach:

 $urban\_productivity_{c,t} = \alpha + \beta_1 population_{c,t-1} + \beta_2 population_{c,t-1}^2 + \beta_3 urban\_functions_{c,t-1} + \beta_4 borrowed\_size_{c,t-1} + \beta_5 borrowed\_functions_{c,t-1} + \beta_6 network\_externalities_{c,t-1} + \varepsilon_{c,t}$ 

B: Model for the dynamic approach:

 $\Delta urban \_ productivity_{c,T-t} = \alpha + \beta_1 population_{c,t} + \beta_2 \Delta urban \_ functions_{c,t-\theta} + \beta_3 \Delta borrowed \_ size_{c,t-\theta} + \beta_4 \Delta borrowed \_ functions_{c,t-\theta} + \varepsilon_{c,t}$ 



#### The data base for the empirical analyses (1)

| Variable                                                                         | Indicator                                                                                                                              | Source of raw data                                                    | Years available                         |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------|
| Urban productivity                                                               | Urban rent per square<br>meter (prices in constant<br>2005 Euros)                                                                      | EUROSTAT + National sources                                           | 2004 and 2011                           |
| High-level urban<br>functions                                                    | Share of high-level<br>occupations over total<br>workforce                                                                             | Labour Force Survey                                                   | Average 1998–<br>2002 and 2002–<br>2006 |
| Urban size                                                                       | Population of the metropolitan area                                                                                                    | EUROSTAT<br>metropolitan areas<br>data base                           | Average 1998–<br>2002 and 2002–<br>2006 |
| Metropolitan location<br>– critical mass<br>(borrowed size)                      | Spatial lags of population<br>in cities discounted by<br>geographical distance                                                         | EUROSTAT<br>metropolitan areas<br>data base, Authors'<br>elaborations | Average 1998–<br>2002 and 2002–<br>2006 |
| Metropolitan location<br>– access to nearby<br>functions (borrowed<br>functions) | Spatial lags of share of<br>high-level occupations in<br>cities discounted by<br>geographical distance                                 | Camagni et al.<br>(2014a), Authors'<br>elaborations                   | Average 1998–<br>2002 and 2002–<br>2006 |
| Cooperation<br>networks (network<br>externalities)                               | High-level urban functions<br>in other cities, discounted<br>by the intensity of FP5<br>and FP6 collaborations<br>between city couples | CORDIS                                                                | 1998–2002 (FP5)<br>2002–2006 (FP6)      |

#### A measure of borrowed size:

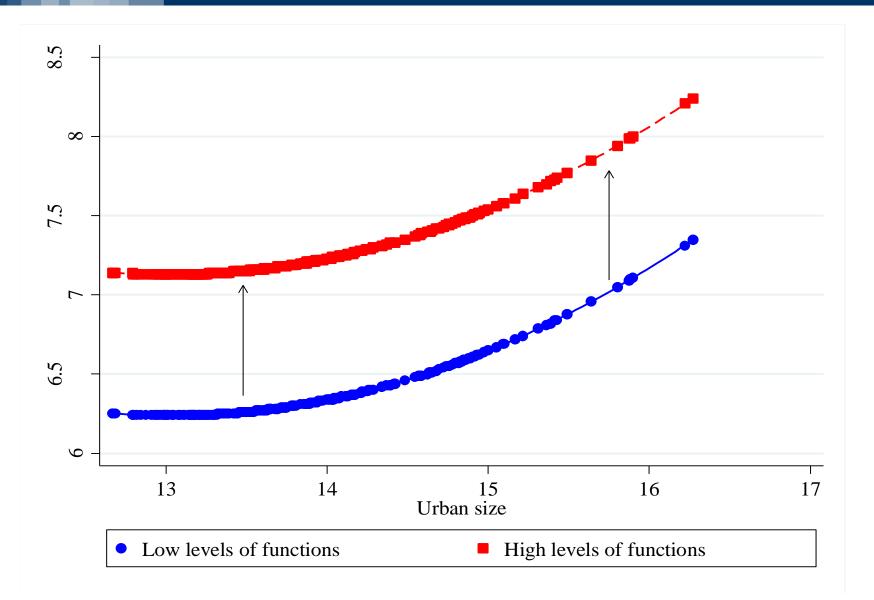
borrowed 
$$\_size_c = \sum_{j=1}^{n} \frac{pop_j}{w_{geo_{c,j}}}, \forall c \neq j$$

A measure of borrowed functions:

*borrowed* 
$$\_$$
 *functions*<sub>c</sub>  $= \sum_{j=1}^{n} \frac{functions_{j}}{W_{geo_{c,j}}}, \forall c \neq j$ 

#### A measure of urban network externalities:

$$city\_network\_externalities_{c} = \sum_{j=1}^{n} \frac{functions_{j}}{W_{coop_{c,j}}}, \forall c \neq j$$


#### A. Empirical results on the static approach

| Dependent variable: urban productivity |            |            |            |            |            |            |  |  |  |
|----------------------------------------|------------|------------|------------|------------|------------|------------|--|--|--|
| Model                                  | ,<br>(1)   | (2)        | (3)        | (4)        | (5)        | (6)        |  |  |  |
| Constant term                          | 21.20***   | 25.17***   | -8.10      | -9.48      | -11.70     | -6.81      |  |  |  |
|                                        | (7.74)     | (7.58)     | (7.43)     | (7.43)     | (7.53)     | (7.56)     |  |  |  |
| City population                        | -2.22**    | -2.41**    | -2.30**    | -2.70**    | -2.51**    | -2.18**    |  |  |  |
|                                        | (1.09)     | (1.04)     | (1.06)     | (1.14)     | (1.09)     | (1.08)     |  |  |  |
| Square city population                 | 0.09**     | 0.09**     | 0.09**     | 0.10***    | 0.10**     | 0.09**     |  |  |  |
|                                        | (0.04)     | (0.04)     | (0.04)     | (0.04)     | (0.04)     | (0.04)     |  |  |  |
| High level urban functions             | -          | 0.24***    | 0.24***    | 0.24***    | 0.24***    | 0.25***    |  |  |  |
|                                        |            | (0.04)     | (0.04)     | (0.04)     | (0.04)     | (0.03)     |  |  |  |
| Borrowed size                          | -          | 0.06       | 0.06       | 0.08       | 0.06       | 0.06       |  |  |  |
|                                        |            | (0.07)     | (0.07)     | (0.07)     | (0.07)     | (0.07)     |  |  |  |
| Borrowed functions                     | -          | 0.99***    | 1.07***    | 1.03***    | 1.00***    | 1.04***    |  |  |  |
|                                        |            | (0.24)     | (0.24)     | (0.27)     | (0.27)     | (0.26)     |  |  |  |
| Network externalities                  | -          | 0.001      | 0.001      | 0.001      | 0.001      | 0.001*     |  |  |  |
|                                        |            | (0.00)     | (0.00)     | (0.00)     | (0.00)     | (0.00)     |  |  |  |
| High-level urban functions* City       | -          | _          | -0.01      | _          | _          | _          |  |  |  |
| population                             |            |            | (0.06)     |            |            |            |  |  |  |
| Borrowed size *                        |            |            |            | A 16**     |            |            |  |  |  |
| City population                        | Increas    | sing retu  | irns at ir | horeasir   | na rates   |            |  |  |  |
| Borrowed functions *                   | morca      | sing roll  | inis at i  | ici casii  | ig raics   |            |  |  |  |
| City population                        | charac     | terize p   | roductiv   | ity laval  | c          |            |  |  |  |
| Network externalities *                | Charac     |            |            |            | 3          | **         |  |  |  |
| City population                        |            |            |            |            |            | (0.00)     |  |  |  |
| Dummy UK                               | -          | -          | -0.07      | -0.07      | -0.07      | -0.07      |  |  |  |
|                                        |            |            | (0.07)     | (0.06)     | (0.06)     | (0.06)     |  |  |  |
| Number of obs.                         | 272        | 272        | 272        | 272        | 272        | 272        |  |  |  |
| Robust standard errors                 | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |  |  |  |
| Method of estimation                   | Pooled OLS |  |  |  |
| R <sup>2</sup>                         | 0.14       | 0.43       | 0.43       | 0.44       | 0.44       | 0.44       |  |  |  |
| Joint F-test                           | 32.46**    | 35.77***   | 29.06***   | 25.72***   | 28.29***   | 26.78***   |  |  |  |
|                                        | 02.10      | 00.11      | 20.00      | 20.12      | 20.20      | 20.10      |  |  |  |

#### A. Empirical results on the static approach

| Dependent verieble: urben productivit           | ,          |            |            |            |            |            |
|-------------------------------------------------|------------|------------|------------|------------|------------|------------|
| Dependent variable: urban productivity<br>Model | (1)        | (2)        | (3)        | (4)        | (5)        | (6)        |
| Constant term                                   | 21.20***   | 25.17***   | -8.10      | -9.48      | -11.70     | -6.81      |
|                                                 | (7.74)     | (7.58)     | (7.43)     | (7.43)     | (7.53)     | (7.56)     |
| City population                                 | -2.22**    | -2.41**    | -2.30**    | -2.70**    | -2.51**    | -2.18**    |
| ony population                                  | (1.09)     | (1.04)     | (1.06)     | (1.14)     | (1.09)     | (1.08)     |
| Square city population                          | 0.09**     | 0.09**     | 0.09**     | 0.10***    | 0.10**     | 0.09**     |
|                                                 | (0.04)     | (0.04)     | (0.04)     | (0.04)     | (0.04)     | (0.04)     |
| High level urban functions                      | -          | 0.24***    | 0.24***    | 0.24***    | 0.24***    | 0.25***    |
|                                                 |            | (0.04)     | (0.04)     | (0.04)     | (0.04)     | (0.03)     |
| Borrowed size                                   | -          | 0.06       | 0.06       | 0.08       | 0.06       | 0.06       |
|                                                 |            | (0.07)     | (0.07)     | (0.07)     | (0.07)     | (0.07)     |
| Borrowed functions                              | -          | 0.99***    | 1.07***    | 1.03***    | 1.00***    | 1.04***    |
|                                                 |            | (0.24)     | (0.24)     | (0.27)     | (0.27)     | (0.26)     |
| Network externalities                           | -          | 0.001      | 0.001      | 0.001      | 0.001      | 0.001*     |
|                                                 |            | (0.00)     | (0.00)     | (0.00)     | (0.00)     | (0.00)     |
| High-level urban functions* City                | -          |            | -0.01      |            | . ,        | . ,        |
| population                                      |            | -          | (0.06)     | -          | -          | -          |
| Borrowed size *                                 |            |            |            | A 16**     |            |            |
| City population                                 | High_lc    | evel fund  | rtione ar  | nd horro   | haw        |            |
| Borrowed functions *                            | I ligii-le |            |            |            | WEU        |            |
| City population                                 | functio    | ns expla   | in nrod    | uctivity   |            |            |
| Network externalities *                         | Tunctio    | 112 Evhic  | an piùu    | uctivity   |            | **         |
| City population                                 |            |            |            |            |            | (0.00)     |
| Dummy UK                                        | -          | -          | -0.07      | -0.07      | -0.07      | -0.07      |
|                                                 |            |            | (0.07)     | (0.06)     | (0.06)     | (0.06)     |
| Number of obs.                                  | 272        | 272        | 272        | 272        | 272        | 272        |
| Robust standard errors                          | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| Method of estimation                            | Pooled OLS |
| R <sup>2</sup>                                  | 0.14       | 0.43       | 0.43       | 0.44       | 0.44       | 0.44       |
|                                                 |            |            | 29.06***   |            | 28.29***   | 26.78***   |
| Joint F-test                                    | 32.46**    | 35.77***   | 29.00      | 25.72***   | 20.29      | 20.70      |

## A. Agglomeration economies and urban size: the role of functions



#### A. Empirical results on the static approach

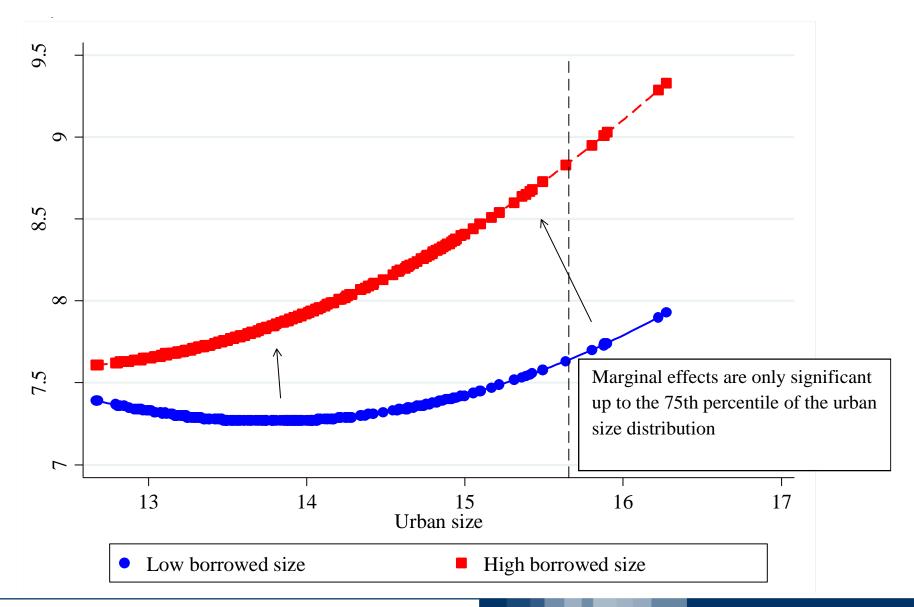
32.46\*\*

Joint F-test

| Dependent variable: urban productivity |            |                    |           |           |          |          |
|----------------------------------------|------------|--------------------|-----------|-----------|----------|----------|
| Model                                  | (1)        | (2)                | (3)       | (4)       | (5)      | (6)      |
| Constant term                          | 21.20***   | 25.17***           | -8.10     | -9.48     | -11.70   | -6.81    |
|                                        | (7.74)     | (7.58)             | (7.43)    | (7.43)    | (7.53)   | (7.56)   |
| City population                        | -2.22**    | -2.41**            | -2.30**   | -2.70**   | -2.51**  | -2.18**  |
|                                        | (1.09)     | (1.04)             | (1.06)    | (1.14)    | (1.09)   | (1.08)   |
| Square city population                 | 0.09**     | 0.09**             | 0.09**    | 0.10***   | 0.10**   | 0.09**   |
|                                        | (0.04)     | (0.04)             | (0.04)    | (0.04)    | (0.04)   | (0.04)   |
| High level urban functions             | -          | 0.24***            | 0.24***   | 0.24***   | 0.24***  | 0.25***  |
| C C                                    |            | (0.04)             | (0.04)    | (0.04)    | (0.04)   | (0.03)   |
| Borrowed size                          | -          | 0.06               | 0.06      | 0.08      | 0.06     | 0.06     |
|                                        |            | (0.07)             | (0.07)    | (0.07)    | (0.07)   | (0.07)   |
| Borrowed functions                     | -          | 0.99***            | 1.07***   | 1.03***   | 1.00***  | 1.04***  |
|                                        |            | (0.24)             | (0.24)    | (0.27)    | (0.27)   | (0.26)   |
| Network externalities                  | -          | 0.001              | 0.001     | 0.001     | 0.001    | 0.001*   |
|                                        |            | (0.00)             | (0.00)    | (0.00)    | (0.00)   | (0.00)   |
| High-level urban functions* City       | _ [        | (0.00)             | -0.01     | (0.00)    | (0.00)   | (0.00)   |
| population                             |            | -                  | (0.06)    | -         | -        | -        |
| Borrowed size *                        |            |                    | (0.00)    | 0 16**    |          |          |
| City population                        | Der        | round              | ita offo  | ata inar  |          | h aitu   |
| Borrowed functions *                   |            | rowed s            | size elle | CLS INCI  | ease wi  | In City  |
| City population                        | - !        | : - : <b>: (</b> : |           |           |          | -        |
| Network externalities *                |            | e, signifi         | cant on   | iy up to  | the 15tr | ר        |
| City population                        |            | · U                |           |           |          |          |
| Dummy UK                               | . per      | centile.           |           |           |          |          |
|                                        | •          |                    |           |           | •        |          |
| Number of obs.                         | 27 Citv    | v networ           | ks effer  | cts decre | ease wit | th urban |
| Robust standard errors                 |            | ,                  |           |           |          |          |
|                                        | C176       | <u>ב</u>           |           |           |          |          |
| Method of estimation                   | Poole SIZC |                    |           |           |          |          |
| R <sup>2</sup>                         | 0.14       | 0.43               | 0.43      | 0.44      | 0.44     | 0.44     |

35.77\*\*\*

29.06\*\*\*


25.72\*\*\*

POLITECNICO DI MILANO

26.78\*\*\*

28.29\*\*\*

## A. Agglomeration economies and urban size: the role of borrowed size



POLITECNICO DI MILANO

## **B.** Empirical results on the dynamic approach

| Dependent variable: urban productivity increases |         |           |         |                   |           |          |         |         |  |  |  |
|--------------------------------------------------|---------|-----------|---------|-------------------|-----------|----------|---------|---------|--|--|--|
| Model                                            | (1)     | (2)       | (3)     | (4)               | (5)       | (6)      | (7)     | (8)     |  |  |  |
| Constant term                                    | -0.36   | -0.53     | -0.10   | -0.04             | -0.10*    | -0.10*   | -0.06   | -0.14** |  |  |  |
|                                                  | (0.51)  | (0.52)    | (0.06)  | (0.06)            | (0.06)    | (0.06)   | (0.05)  | (0.06)  |  |  |  |
|                                                  | 0.02    | 0.03      | 0.04    | 0.04              | 0.02      | 0.04     | 0.03    | 0.04    |  |  |  |
| City population                                  | (0.03)  | (0.03)    | (0.03)  | (0.03)            | (0.03)    | (0.04)   | (0.04)  | (0.04)  |  |  |  |
| Growth of high level                             | 0.17*** | 0.15***   | 0.15**  | 0.15**            | 0.14***   | 0.15***  | 0.16*** | 0.16*** |  |  |  |
| urban functions                                  | (0.06)  | (0.06)    | (0.06)  | (0.07)            | (0.03)    | (0.05)   | (0.06)  | (0.06)  |  |  |  |
| Growth of borrowed                               | 0.001   | 0.001     | 0.001   | 0.001             | 0.002     | 0.001    | 0.001   | 0.001   |  |  |  |
| size                                             | (0.00)  | (0.00)    | (0.00)  | (0.00)            | (0.001)   | (0.00)   | (0.00)  | (0.00)  |  |  |  |
| Growth of borrowed                               | • -     | 0.43**    | 0.46**  | 0.49**            | 0.45*     | 0.46**   | 0.43*   | 0.45*   |  |  |  |
| functions                                        | -       | (0.23)    | (0.23)  | (0.23)            | (0.24)    | (0.24)   | (0.24)  | (0.24)  |  |  |  |
| Or-suth of potworks                              |         | • -       | -0.31** | -0.28             | -0.00     | -0.00    | -0.00   | -0.00   |  |  |  |
| Growth of networks                               | -       | -         | (0.19)  | (0.19)            | (0.00)    | (0.00)   | (0.00)  | (0.00)  |  |  |  |
| Urban natwarka                                   |         |           |         | 0.19 <sup>*</sup> |           | <b>`</b> | 、       | · · ·   |  |  |  |
| Urban networks                                   | -       | -         | -       | (0 11)            | -         | -        | -       | -       |  |  |  |
| Growth of high level                             | Dopu    | ulation i |         | e aigmifi         | a a n thu |          |         |         |  |  |  |

Growth of high level<br/>urban functions \* City<br/>population<br/>Growth of borrowed<br/>size \* City population<br/>Growth of borrowed<br/>functions \* City<br/>population<br/>Growth of networks\*<br/>City population<br/>Number of obs.PNumber of obs.1Robust standard errors<br/>Method of estimationYOJoint F-test test3.0

| -                                | -         | -       | 0.19*<br>(0.11) | -        | -       | -          | -               |  |  |  |
|----------------------------------|-----------|---------|-----------------|----------|---------|------------|-----------------|--|--|--|
| Popu                             | lation is | s nevei | cantly          |          | -       | -          |                 |  |  |  |
| associated to increases in urban |           |         |                 |          |         |            |                 |  |  |  |
| produ                            | uctivity  |         | -<br>).07       | -        |         |            |                 |  |  |  |
| -                                | -         | -       | -               | -        | -       | (0.31)     | -               |  |  |  |
| -                                | -         | -       | -               | -        | -       | -          | -0.00<br>(0.00) |  |  |  |
| 136                              | 136       | 136     | 136             | 136      | 136     | 136        | 136             |  |  |  |
| Yes                              | Yes       | Yes     | Yes             | Yes      | Yes     | Yes        | Yes             |  |  |  |
| OLS                              | OLS       | OLS     | OLS             | OLS      | OLS     | OLS        | OLS             |  |  |  |
| 0.09                             | 0.12      | 0.14    | 0.16            | 0.15     | 0.15    | 0.12       | 0.12            |  |  |  |
| 3.01**                           | 3.35**    | 3.09**  | 2.97***         | 14.50*** | 5.52*** | 2.46**     | 2.33**          |  |  |  |
|                                  |           |         |                 |          | POLI    | TECNICO DI | MILANO          |  |  |  |

## **B.** Empirical results on the dynamic approach

| Dependent variable: urban productivity increases |           |          |         |                 |          |                 |             |         |  |  |
|--------------------------------------------------|-----------|----------|---------|-----------------|----------|-----------------|-------------|---------|--|--|
| Model                                            | (1)       | (2)      | (3)     | (4)             | (5)      | (6)             | (7)         | (8)     |  |  |
| Constant term                                    | -0.36     | -0.53    | -0.10   | -0.04           | -0.10*   | -0.10*          | -0.06       | -0.14** |  |  |
|                                                  | (0.51)    | (0.52)   | (0.06)  | (0.06)          | (0.06)   | (0.06)          | (0.05)      | (0.06)  |  |  |
| City population                                  | 0.02      | 0.03     | 0.04    | 0.04            | 0.02     | 0.04            | 0.03        | 0.04    |  |  |
|                                                  | (0.03)    | (0.03)   | (0.03)  | (0.03)          | (0.03)   | (0.04)          | (0.04)      | (0.04)  |  |  |
| Growth of high level                             | 0.17***   | 0.15***  | 0.15**  | 0.15**          | 0.14***  | 0.15***         | 0.16***     | 0.16*** |  |  |
| urban functions                                  | (0.06)    | (0.06)   | (0.06)  | (0.07)          | (0.03)   | (0.05)          | (0.06)      | (0.06)  |  |  |
| Growth of borrowed                               | 0.001     | 0.001    | 0.001   | 0.001           | 0.002    | 0.001           | 0.001       | 0.001   |  |  |
| size                                             | (0.00)    | (0.00)   | (0.00)  | (0.00)          | (0.001)  | (0.00)          | (0.00)      | (0.00)  |  |  |
| Growth of borrowed                               | -         | 0.43**   | 0.46**  | 0.49**          | 0.45*    | 0.46**          | 0.43*       | 0.45*   |  |  |
| functions                                        |           | (0.23)   | (0.23)  | (0.23)          | (0.24)   | (0.24)          | (0.24)      | (0.24)  |  |  |
| Growth of networks                               | -         | -        | -0.31** | -0.28           | -0.00    | -0.00           | -0.00       | -0.00   |  |  |
|                                                  |           |          | (0.19)  | (0.19)          | (0.00)   | (0.00)          | (0.00)      | (0.00)  |  |  |
| Urban networks                                   | -         | -        | -       | 0.19*<br>(0.11) | -        | -               | -           | -       |  |  |
| Growth of high level                             |           |          |         | ( )             | -0.15*** |                 |             |         |  |  |
| urban functions * City                           | -         | -        | -       | -               | (0.05)   | -               | -           | -       |  |  |
| population                                       |           |          |         |                 | (0.05)   |                 |             |         |  |  |
| Growth of borrowed                               |           |          |         |                 |          | 0.003**         |             |         |  |  |
| size * Citv population                           | -         | -        | -       | -               | -        | (0.001)         | -           | -       |  |  |
| Growth The group                                 | th of i   | irhan fi | inction |                 |          |                 | -0.07       |         |  |  |
| functio The grow                                 |           | IDanic   |         | 5 15 aiw        | lays     | -               | (0.31)      | -       |  |  |
| <sup>popula</sup><br>Growtł positively           | 1 2000    | ciated t | ourbar  | nrodu           |          |                 | (0.01)      |         |  |  |
|                                                  | assu      |          | u u bai | i produ         | ictivity | -               | -           | -0.00   |  |  |
|                                                  |           | timo     |         |                 |          |                 |             | (0.00)  |  |  |
| Numbe IIICIEases                                 | 3 0 4 6 1 |          |         |                 |          | 136             | 136         | 136     |  |  |
| Robus These ef                                   | ferte a   | re decr  | reasina | with ci         | ity siza | Yes             | Yes         | Yes     |  |  |
| Metho                                            |           |          | casing  |                 | 10000000 | OLS             | OLS         | OLS     |  |  |
| Pseudo-R <sup>2</sup>                            | 0.09      | 0.12     | 0.14    | 0.16            | 0.15     | 0.15            | 0.12        | 0.12    |  |  |
| Joint F-test test                                | 3.01**    | 3.35**   | 3.09**  | 2.97***         | 14.50*** | 5 <u>.52***</u> | 2.46**      | 2.33**  |  |  |
|                                                  |           |          |         |                 |          | POLI            | ITECNICO DI | MILANO  |  |  |

| Dependent variable: ur |           | (increased) |          |          |           |                 | (7)        | (0)     |
|------------------------|-----------|-------------|----------|----------|-----------|-----------------|------------|---------|
| Model                  | The gro   | owth of     | borrow   | /ed size | e is only | /               | (7)        | (8)     |
| Constant term          | Ŭ         |             |          |          | •         |                 | -0.06      | -0.14** |
|                        | significa | ant up '    | to the 4 | Uth pe   | rcentile  | of the          | (0.05)     | (0.06)  |
| City population        | U         | •           |          |          |           |                 | 0.03       | 0.04    |
|                        | city size | e distrik   | oution   |          |           |                 | (0.04)     | (0.04)  |
| Growth of high level   |           |             |          |          |           |                 | 0.16***    | 0.16*** |
| urban functions        | (0.06)    | (0.06)      | (0.06)   | (0.07)   | (0.03)    | (0.05)          | (0.06)     | (0.06)  |
| Growth of borrowed     | 0.001     | 0.001       | 0.001    | 0.001    | 0.002     | 0.001           | 0.001      | 0.001   |
| size                   | (0.00)    | (0.00)      | (0.00)   | (0.00)   | (0.001)   | (0.00)          | (0.00)     | (0.00)  |
| Growth of borrowed     | -         | 0.43**      | 0.46**   | 0.49**   | 0.45*     | 0.46**          | 0.43*      | 0.45*   |
| functions              |           | (0.23)      | (0.23)   | (0.23)   | (0.24)    | (0.24)          | (0.24)     | (0.24)  |
| Growth of networks     | -         | -           | -0.31**  | -0.28    | -0.00     | -0.00           | -0.00      | -0.00   |
|                        |           |             | (0.19)   | (0.19)   | (0.00)    | (0.00)          | (0.00)     | (0.00)  |
| Urban networks         | -         | -           | -        | 0.19*    | -         | -               | -          | -       |
|                        |           |             |          | (0.11)   |           |                 |            |         |
| Growth of high level   |           |             |          |          | -0.15***  |                 |            |         |
| urban functions * City | -         | -           | -        | -        | (0.05)    | -               | -          | -       |
| population             |           |             |          |          | (0100)    |                 |            |         |
| Growth of borrowed     | -         | -           | -        | -        | -         | 0.003**         | -          | -       |
| size * City population |           |             |          |          |           | (0.001)         |            |         |
| Growth of borrowed     |           |             |          |          |           |                 | -0.07      |         |
| functions * City       | -         | -           | -        | -        | -         | -               | (0.31)     | -       |
| population             |           |             |          |          |           |                 | (0.01)     |         |
| Growth of networks*    | -         | -           | -        | -        | -         | -               | -          | -0.00   |
| City population        |           |             |          |          |           |                 |            | (0.00)  |
| Number of obs.         | 136       | 136         | 136      | 136      | 136       | 136             | 136        | 136     |
| Robust standard errors | Yes       | Yes         | Yes      | Yes      | Yes       | Yes             | Yes        | Yes     |
| Method of estimation   | OLS       | OLS         | OLS      | OLS      | OLS       | OLS             | OLS        | OLS     |
| Pseudo-R <sup>2</sup>  | 0.09      | 0.12        | 0.14     | 0.16     | 0.15      | 0.15            | 0.12       | 0.12    |
| Joint F-test test      | 3.01**    | 3.35**      | 3.09**   | 2.97***  | 14.50***  | 5 <u>.52***</u> | 2.46**     | 2.33**  |
|                        |           |             |          |          |           | POLI            | TECNICO DI | MILANO  |
|                        |           |             |          |          |           |                 |            |         |



- This paper has shed light on the debate on the role of agglomeration economies in explaining urban growth.
- A static size-performance correlation is misinterpreted as a causal, dynamic relationship.
- Three bridging links between a static and a dynamic approach are suggested:
  - The use of net benefits instead of gross ones
  - The inclusion of other determinants of urban efficiency beyond pure size
  - The explicit introduction of the time dimension in both the theoretical and the empirical analysis



- Productivity increases and growth may be generated not only by large and mega-cities but also by medium-size cities – solid, specialized, endowed with advanced functions – and by mid-size regional urban systems characterized by high internal accessibility, complementarities and by a relevant internal integration of the goods and labor markets.
- In a period of crisis, policy makers should concentrate their limited resources in those cities able to:
  - develop an evolutionary and innovation-oriented strategy
  - invest in renovated economic functions
  - build 'smart' cooperation networks.



# Thank you!



- 1. Burger, M. J., Meijers, E. J., Hoogerbrugge, M. M., and Masip Tresserra, J. (2014). "Borrowed size, agglomeration shadows and cultural amenities in North-West Europe", *European Planning Studies*, online first. doi: 10.1080/09654313.2014.905002
- Camagni, R., Capello, R., and Caragliu, A. (2014a). "The Rise of Second-Rank Cities: What Role for Agglomeration Economies?", *European Planning Studies*, online first. doi: 10.1080/09654313.2014.904999.
- 3. Capello R. (2009). "Indivisibilities, synergy and proximity: the need for an integrated approach to agglomeration economies", *Tijdschrift voor Economische en Sociale Geographie (TESG)*, 100 (2): 145-159.
- 4. Combes, P.-P., Duranton, G., and Gobillon, L. (2008). "Spatial wage disparities: sorting matters", *Journal of Urban Economics*, 63 (2): 723–742.
- 5. Dijkstra, L., Garcilazo, E. & McCann, P. (2013). "The economic performance of European cities and city regions: Myths and realities", *European Planning Studies*, 21(3): 334–354.
- 6. Glaeser, E. L. (2011). "*Triumph of the City: How Our Greatest Invention Makes Us Richer, Smarter, Greener, Healthier, and Happier*", New York (NY): Penguin Books.
- 7. Meijers E. (2013), "Cities Borrowing Size: An Exploration of the Spread of Metropolitan Amenities across European Cities", *paper presented at the Association of American Geographers annual meeting*, Los Angeles, April 9-13.
- 8. Rosenthal, S. S., and Strange, W. C. (2001). "The determinants of agglomeration", *Journal of Urban Economics*, 50 (2): 191-229.
- 9. Puga, D. (2010). "The magnitude and causes of agglomeration economies", *Journal of Regional Science*, 50 (1): 203–219.